Introduction to SPSS

2nd Class Chemistry Dept.

Instructor: Yahiea Al-Naiemy

What is in this workshop

- 2
- SPSS interface: data view and variable view
- How to enter data in SPSS
- How to import external data into SPSS
- How to clean and edit data
- How to transform variables
- How to sort and select cases
- How to get descriptive statistics

SPSS interface

3)

Data view

- The place to enter data
- Occione de la constant de la cons
- o Rows: records

Variable view

- The place to enter variables
- List of all variables
- Characteristics of all variables

Before the data entry

- You need a code book/scoring guide
- If you use online survey, you need something to identify your cases.
- You also can use Excel to do data entry.

Example of a code book

2009 Youth Risk Behavior Survey Code Book

Q1. How old are you?

Response options: 1 = 12 years old or younger; 2 = 13 years old; 3 = 14 years old;

4 = 15 years old; 5 = 16 years old; 6 = 17 years old; 7 = 18 years old or older

Q2. What is your sex?

Response options: 1= Female; 2 = Male

Q20. During the past 12 months, did your boyfriend or girlfriend ever hit, slap, or physically hurt you on purpose?

Response options: 1 = Yes; 2 = No

Recoded variable name: O20r

Response options: 1 = Yes; 0 = No

A code book is about how you code your variables. What are in code book?

- 1. Variable names
- 2. Values for each response option
- 3. How to recode variables

Enter data in SPSS 19.0

Enter variables

Enter variables

Enter cases

Import data from Excel

- Select File Open Data
- Choose Excel as file type
- Select the file you want to import
- Then click Open

Open Excel files in SPSS

Import data from CVS file

- CVS is a comma-separated values file.
- If you use Qualtrics to collect data (online survey), you will get a CVS data file.
- Select File
 — Open
 — Data
- Choose All files as file type
- Select the file you want to import
- Then click Open

Text Import Wizard - Delimited Step 3 of 6					
The first case of data begins on which line number?					
How are your cases represented?					
Each line represents a case					
A specific number of <u>v</u> ariables represents a case:					
How many cases do you want to import?					
All of the cases					
◯ <u>T</u> he first ₁₀₀₀ cases.					
O A random percentage of the cases (approximate): 10 🚖 %					
-Data preview					
0 10 20 30 40 50 60					
1 4,2,3,1,1,1,3,3,,,,,,,,,,,,,,,,,,,,,,,,,					
< Back Next > Finish Cancel Help					

Clean data after import data files

- 20
- Key in values and labels for each variable
- Run frequency for each variable
- Check outputs to see if you have variables with wrong values.
- Check missing values and physical surveys if you use paper surveys, and make sure they are real missing.
- Sometimes, you need to recode string variables into numeric variables

Q1 How old are you

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	1 12 years old or younger	19	.1	.1	.1
	2 13 years old	17	.1	.1	.2
	3 14 years old	1851	11.3	11.3	11.5
	4 15 years old	4045	24.7	24.7	36.3
	5 16 years old	4234	25.8	25.9	62.2
	6 17 years old	3963	24.2	24.2	86.4
	7 18 years old or older	2215	13.5	13.6	100.0
	8	1	.0	.0	100.0
	9	1	.0	.0	100.0
 	Total	16344	99.6	100.0	
Mi sing	System	66	.4		
/ otal		16410	100.0		

Wrong entries

Variable transformation

22

Recode variables

- Select Transform —— Recode into Different Variables
- 2. Select variable that you want to transform (e.g. Q20): we want 1= Yes and 0 = No
- 3. Click Arrow button to put your variable into the right window
- 4. Under Output Variable: type name for new variable and label, then click Change
- 5. Click Old and New Values

6. Type 1 under Old Value and 1 under New Value, click Add. Then type 2 under Old Value, and 0 under New Value, click

7. Click Continue after finish all the changes.

8. Click Ok

Add.

Variable transformation

24

- Compute variable (use YRBSS 2009 data)
 - Example 1. Create a new variable: drug_use (During the past 30 days, any use of cigarettes, alcohol, and marijuana is defined as use, else as non-use). There are two categories for the new variable (use vs. non-use). Coding: 1= Use and 0 = Non-use
 - 1. Use Q30, Q41, and Q47 from 2009 YRBSS survey
 - 2. Non-users means those who answered **0** days/times to all three questions.
 - 3. Go to Transform ____ Compute Variable

9. Click OK 10. After click OK, a small window asks if you want to change existing variable because drug_use was already created when you first define non-use. 11. Click ok.

28

Compute variables

- Example 2. Create a new variable drug_N that assesses total number of drugs that adolescents used during the last 30 days.
- 1. Use Q30 (cigarettes), 41 (alcohol), 47 (marijuana), and 50 (cocaine). The number of drugs used should be between 0 and 4.
- 2. First, recode all four variables into two categories: 0 = nonuse(0 days), 1 = use(at least 1 day/time)
- 3. Four variables have 6 or 7 categories

- 4. Recode four variables: 1 (old) = 0 (new), 2-6/7 (old) = 1 (New).
- 5. Then select Transform → Compute Variable

- 6. Type drug_N under Target Variable
- 7. Numeric Expression: SUM (Q30r,Q41r,Q47r,Q50r)
- 8. Click OK

31)

Compute variables

• Example 3: Convert string variable into numeric variable

- 1. Enter 1 at Numeric Expression.
- 2. Click If button and type Q2 = 'Female'
- 3. Then click Ok.
- 4. Enter 2 at Numeric Expression.
- 5. Click If button and type Q2 = 'Male'
- 6. Then click Ok

- Sort cases by variables: Data Sort Cases
- You can use Sort Cases to find missing.

33

Select cases

- Example 1. Select Females for analysis.
- 1. Go to Data Select Cases
- 2. Under Select: check the second one
- 3. Click If button

35

7. You will see a new variable: filter_\$ (Variable view)

(36)

Select cases

- Example 2. Select cases who used any of cigarettes, alcohol, and marijuana during the last 30 days.
- 1. Data Select Cases
- 2. Click If button
- 3. Type Q30 > 1 | Q41 > 1 | Q47 > 1, click Continue

Basic statistical analysis

37

Descriptive statistics

- O Purposes:
- 1. Find wrong entries
- 2. Have basic knowledge about the sample and targeted variables in a study
- 3. Summarize data

Analyze → Descriptive statistic → Frequency

Frequency table

1. Skewness: a measure of the asymmetry of a distribution. The normal distribution is symmetric and has a skewness value of zero.

Positive skewness: a long right tail. Negative skewness: a long left tail. Departure from symmetry: a skewness value more than twice its standard error.

2. Kurtosis: A measure of the extent to which observations cluster around a central point. For a normal distribution, the value of the kurtosis statistic is zero. Leptokurtic data values are more peaked, whereas platykurtic data values are flatter and

more dispersed along the X axis.